Question	Acceptable Answers	Reject	Mark
Number			
1 (a)	C_nH_{2n+2}		1
	IGNORE 'where n=1, 2, 3 etc' or		
	'where n is greater than 1'		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	$C_{10}H_{22} + 10\frac{1}{2}O_2 \rightarrow 10CO + 11H_2O$	21 [0]	1
	ALLOW 21 / 2 O ₂		
	ALLOW any correct multiples		
	IGNORE state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Any statement that makes it clear there is not enough air or oxygen e. Limited supply of air / limited supply of oxygen / not enough air / not enough oxygen / lack of oxygen / little amount of oxygen/ small amount of oxygen IGNORE "it is not completely oxidized"		1

Question Number	Acceptable Answers	Reject	Mark
1(c)	First mark Dative pair of e ⁻ between S and righthand O (1)		3
	Second mark Two bond pairs between S and left- hand O (1)		
	Third mark Two lone pairs on left-hand O, one lone pair on central S and three lone pairs on right-hand O atom (1)		
	If 2 double bonds between sulfur and each oxygen then the third mark can be given for two lone pairs on both oxygens and one lone pair on central S		
	NOTE		
	ALLOW dots and crosses that have been reversed		
	Lone pair electrons can be shown as separated (rather than having to be paired up) – it is the total number of electrons in each outer shell that matters		
	Stand alone marks		
	If molecule shown as charged then 2 max		

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)		benzene ring	1

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	$C_7H_{16} \rightarrow C_7H_{14} + H_2$	Formulae other than molecular formulae	1
	ALLOW C ₆ H ₁₁ CH ₃ IGNORE state symbols, even if	Any other structural or displayed formulae	
	incorrect		

Question Number	Acceptable Answers	Reject	Mark
1(d) (iii)	Any ONE of: (a cyclic alkane)	Less pollution / reduce waste	1
	has more efficient combustion	High atom economy	
	allows smoother burning		
	increases octane number	Produces useful products / hydrogen	
	reduces knocking / less likely to produce pre-ignition	Used to make polymers	
	is a more efficient fuel burns better / easier to burn /combusts more easily / improves combustion	Produces substances in higher demand / more valuable	
	IGNORE (a cyclic alkane): increases the volatility of a fuel "ignites more easily" "is a better fuel" "burns more cleanly"		
	IGNORE (a cyclic alkane) has a lower boiling point mentions of viscosity safer fuel		

Question	Acceptable Answers	Reject	Mark
Number			
1 (e)(i)	2,2-dimethylpentane	2-dimethylpentane	1
	IGNORE missing hyphen/missing		
	comma		

Question Number	Acceptable Answers	Reject	Mark
1(e)(ii)	(1)		2
	(1)		
	IGNORE names even if incorrect		
	IGNORE different length bonds		
	IGNORE direction of methyl groups		

Question	Acceptable Answers	Reject	Mark
Number			
1 (f)(i)	U.V. / U.V.light / light / sunlight		1
	ALLOW high temperature	heat alone	

Question Number	Acceptable Answers	Reject	Mark
1 (f)(ii)	$Cl_2 \rightarrow Cl \cdot + Cl \cdot /$		1
	$Cl_2 \rightarrow 2Cl$		
	IGNORE any curly arrows, even if incorrect		
	IGNORE C ₄ H ₁₀ given on both sides		

Question	Acceptable Answers	Reject	Mark
Number			
1 (f)(iii)	Homolytic (fission)	Photolysis (fission) / free	1
		radical (fission)	
	IGNORE any formulae and arrows		

Question	Acceptable Answers	Reject	Mark
Number			
1 (f)(iv	propagation step)		2
	$C_4H_{10} + CI \rightarrow C_4H_{9} + HCI$ (1)	Any reactions involving Hydrogen radicals scores	
	(Second propagation step)	zero	
	C_4H_9 + $CI_2 \rightarrow C_4H_9CI$ + CI (1)	Reverse of first reaction	
	Formulae can be displayed		
	'dots' can be anywhere on free radical but no dots at all scores zero		
	ALLOW in either order		
	Incorrect alkane / halogenoalkane but two correct propagation steps scores 1 out of 2		

Question	Acceptable Answers	Reject	Mark
Number			
1 (f)(v)	Any ONE of:		1
	C_4H_9 + CI $\rightarrow C_4H_9CI$		
	OR		
	$Cl \cdot + Cl \cdot \rightarrow Cl_2$		
	OR		
	C_4H_9 + C_4H_9 $\rightarrow C_8H_{18}$		

Question	Correct Answer	Reject	Mark
Number			
2 (a)(i)	Easier to transport / easier to store / less space / less volume needed for storage / easier to handle / easier to transfer // IGNORE references to "safety" Accept Denser/cheaper to transport OWTTE	Just "cost"	1

Question Number	Correct Answer	Reject	Mark
2 (a)(ii)	skeletal formula (1)		4
	Name: butane (1) Stand alone		
	skeletal formula (1)		
	Name: methylpropane OR 2-methylpropane (1) IGNORE incorrect punctuation [e.g. extra/missing hyphens, etc.] Stand alone		
	IGNORE displayed formulae if also given with skeletal formulae		
	if 2 correct displayed formulae are given max 1 out of 2 for the structures		

Question Number	Correct Answer	Reject	Mark
2 (a)(iii)	(Structural) isomers		1

Question Number	Correct Answer	Reject	Mark
2 (b)(i)	$Cl_2 \rightarrow Cl^{\bullet} + Cl^{\bullet} /$ $Cl_2 \rightarrow 2Cl^{\bullet}$ (1) (U.V.) light / sunlight (1) Must show the dots \cdot IGNORE any subsequent propagation steps in (b)(i)	heat alone	2

Question Number	Correct Answer	Reject	Mark
2 (b)(ii)	$C_3H_8 + CI \rightarrow C_3H_7 + HCI$ (1)		2
	C_3H_7 + $CI_2 \rightarrow C_3H_7CI$ + CI (1)		
	Must show the dots •		

Question Number	Correct Answer	Reject	Mark
2 (b)(iii)	C_3H_7 + CI \rightarrow C_3H_7CI		1
	OR		
	$Cl \cdot + Cl \cdot \rightarrow Cl_2$		
	OR		
	C_3H_7 + C_3H_7 \rightarrow C_6H_{14}		
	Must show dots in termination step		

Question	Correct Answer	Reject	Mark
Number			
2 (c)(i)	Alkene / triene		1
	Accept		
	Diene		
	Carbon-carbon double bond		

Question	Correct Answer	Reject	Mark
Number			
2 (c)(ii)	From: Red / brown / orange / yellow or combinations of these colours		1
	To: colourless both colours needed	"clear" instead of colourless	

Question	Correct Answer	Reject	Mark
Number			
2 (c)(iii)	Electrophilic (1)		2
	addition (1)		

Question	Correct Answer	Reject	Mark
Number 2 (c)(iv)	Calculation:		2
	0.01 mol myrcene reacts with 0.03 mol H ₂		
	OR 1 mol myrcene reacts with 3 mol H ₂ (1)		
	Structural formula:		
	(CH ₃) ₂ CH(CH ₂) ₃ CH(CH ₃)CH ₂ CH ₃		
	OR $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Accept Fully displayed formula/skeletal formula		
	Mark calculation and structural formula independently.		

Question Number	Correct Answer	Reject	Mark
2 (d)	repeat unit (1) continuation bonds shown (but these bonds do not have to cut through the brackets) (1) n not essential IGNORE the position of "n" relative to the repeat unit (e.g. can be written as a superscript)		2

Question Number	Acceptable Answers	Reject	Mark
3 (a)	$C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ Formulae and states (1)		2
	Balancing of correct entities (1)	Multiples	

Question Number	Acceptable Answers		Reject	Mark
3 (b)	Notice the first mark is for the equation ar there are 3 separate additional marks for calculation			4
	нн нн			
	H-C-C-H + CI-CI → H-C-C-CI + H-CI			
	нн нн (1)			
	Check all bonds displayed especially CI-CI H-	and		
			Incorrect /	
	Calculation marks:		no sign and / or incorrect	
	+413 + 243 (1) (-)(346 + 432) (1)		units	
	OR 656 (1) (-) 778 (1)			
	= -122 (kJ mol ⁻¹) (1)			
	Fully correct answer to calculation with no working	(3)		
	Extra 5x413 and 347 may be included on sides, giving 3068 and (-)3190	both		
	Allow other same values(s) missing from be sides	both	Incorns	
	Bonds breaking	(1)	Incorrect units loses	
	Bonds making	(1)	this mark	
	[Bonds breaking - bonds making] to give correct answer with sign	(1)		

Question Number	Acceptable Answers		Reject	Mark
3 (c)(i)	Initiation (*) Allow homolysis / atomization / homolytic (fission)	1)	Free radical substitution alone	2
	Ignore any reference to free radical substitution		Photolysis	
	UV / (sun)light ((1)		
	Ignore reference to high temperature			

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	CH ₃ CH ₂ • + CI-CI → CH ₃ CH ₂ CI + CI•		3
	OR		
	$CH_3CH_2 \bullet + CI-CI \rightarrow C_2H_5CI + CI \bullet$		
	Both products correct including dot (1)		
	Two half headed arrows showing homolytic breaking of CI-CI bond (1)		
	Half headed arrow from radical to pair with a Cl arrow		
	OR		
	One arrow from chlorine bond clearly to ethyl radical (1)		
	Arrows must be single-headed		
	CH3 CH2 CH2 CL		
	CH3 CH2 · A a = a		
	CH3CH2 CL = U		
	The two dots in the covalent bond do not have to be shown		

Question Number	Acceptable Answers		Reject	Mark
3 (c)(iii)	CI• + CI• \rightarrow CI ₂ (1 •CH ₂ CH ₃ + •CH ₂ CH ₃ \rightarrow CH ₃ CH ₂ CH ₂ CH ₃ / C ₄ H		C ₄ H ₁₂	2
	(1		CH ₃ CH ₂ CH ₃ CH ₂	
	$\bullet CH_2CH_3 + CI \bullet \rightarrow CH_3CH_2CI $ (*)	1)		
	Penalise missing dots once			
	Allow ${}^{\bullet}C_2H_5$ for ${}^{\bullet}CH_2CH_3$			
	Di and tri substitution steps			

Question	Acceptable Answers	Reject	Mark
Number			
3 (d)	$C_2H_6 \rightarrow C_2H_4 + H_2$		1
	Allow $2C_2H_6 \rightarrow C_2H_4 + 2CH_4$		

Question Number	Acceptable Answers		Reject	Mark
3 (e)	Any two from:			2
	(It) produces (more) petrol / gasoline / diesel / jet fuel / LPG / liquid petroleum / fuel	gas (1)	Points based on atom economy / renewable fuels alone	
	Short chain alkanes / lighter fractions ar more useful products	e (1)	Easier to transport / store	
	Demand is greater for shorter chain alka / lighter fractions / smaller molecules OF converts surplus of low demand fractions	?		
		(1)	Short chain	
	It produces ethane / short chain alkenes making poly(ethene) / ethane-1,2-diol / ethanol / plastics / polymers	for (1)	alkenes / ethene more useful alone	
	Smaller alkanes give less pollution/burn more efficiently	(1)		
	Recycles waste products	(1)	Recycles alone	
	As a source of hydrogen	(1)		
	NB examiners need to look carefully at to vowel in the middle of alkane / alkene / ethane / ethene if not clear do not give			

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	CH ₃ CH ₃ + Cl• → CH ₃ CH ₂ • + HCl OR		1
	$CH_3CH_2 \cdot + Cl_2 \rightarrow CH_3CH_2Cl + Cl \cdot$		

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	$CH_3CH_2 \cdot + Cl_2 \rightarrow CH_3CH_2CI + Cl \cdot OR$ $CH_3CH_3 + Cl \cdot \rightarrow CH_3CH_2 \cdot + HCI$ N.B. different answers for (i) and (ii) needed		1

Question Number	Acceptable Answers	Reject	Mark
4(a)(iii)	$2CH_3CH_2 \cdot \rightarrow CH_3CH_2CH_2CH_3$ OR $CH_3CH_2 \cdot + CI \cdot \rightarrow CH_3CH_2CI$	$Cl \cdot + Cl \cdot \rightarrow Cl_2$	1

Question Number	Acceptable Answers	Reject	Mark
4(a)(iv)	$CH_3CH_2 \cdot + CI \cdot \rightarrow CH_3CH_2CI$ OR $2CH_3CH_2 \cdot \rightarrow CH_3CH_2CH_2CH_3$ N.B. different answers for (iii) and (iv) needed		1

Question Number	Acceptable Answers	Reject	Mark
4(b)	First mark: Structural formula (enough to see the structure) of any polyhalogenated ethane derivative OR any polyhalogenated methane derivative	Butane /C ₄ H ₁₀ / CH ₃ CH ₂ CH ₂ CH ₃ / chlorobutane / hexane / chloromethane	2
	ALLOW correct displayed or skeletal formula (1)		
	Second mark: If first mark awarded the name must be consequentially correct		
	IGNORE any missing or incorrect numbering in name (e.g. "dichloroethane" scores the mark)		
	IGNORE missing or incorrect hyphens		
	If first mark NOT awarded then only ALLOW correct name of any polyhalogenated ethane or polyhalogenated methane derivative (1)		

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	1st mark for HAZARD: This mark is for the idea of: (substance or procedure that) can cause harm/may cause harm/has the potential to do harm/can be dangerous ALLOW references to specific hazards such as toxic/flammable /harmful/ irritant /corrosive /oxidizing/ carcinogenic for the mark (1)	Just "causes harm"/just "is a danger"	2
	2 nd mark for RISK: This mark is for the idea of likelihood/probability/chance that harm will result (from the use of a substance or a procedure) (1)		

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	fume cupboard OR gloves OR u.v. goggles	Just 'open windows'/Just well-ventilated lab/Just 'gas mask'/Just "use of smaller quantities"/close d system/closed experiment	1